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The process of damage a~.'umulation and crack growth under a combination of cyclic loads and environmental effects (the so- 
called corrosion fatigue) are considered. The equilibrium and energy balance relations in the "solid with cracks-load" system are 
supplemented by equations which describe the process of damage accumulation at the crack tips and their continuation. In addition 
to a phenomenological measure of the microdamage of mechanical origin, parameters characterizing the change in the properties 
near the contact surface due to physicochemical factors are introduced. The model takes into account the influence of extremal 
stresses of the cycle, the loading frequency and the parameters of the environment (such as the concentration of the corrosive agent 
or pH value), and the influe:ace of the initial conditions on the rate of crack growth, the level of damage and the effective concentration 
ratio on the moving front, as well as the total time to fracture, measured both in number of cycles and in units of time. The model 
gives a satisfactory descripl:ion of the behaviour of corrosion fatigue cracks. © 1998 Elsevier Science Ltd. All rights reserved. 

Crack growth under the effect of cyclic and/or prolonged loads is a purely mechanical process that is 
studied in fracture mechanics (in its broad sense). The scale of the process varies widely, from the level 
of a crystal lattice to the level of structural elements. To construct models of the growth of fatigue cracks, 
therefore, in addition to classical continuum mechanics, one must use the phenomenological or structural 
models of the mechanics of the accumulation of dispersed damage. All the stages of crack growth, from 
nucleation to final fracture, can be described by a synthesis of fracture mechanics and the continuum 
mechanics of damage accumulation [1, 2]. 

Models of fatigue fracture become more complicated when the influence of the active surrounding 
media (liquid or gaseous) on the properties of the material and its state near the crack tip must be 
taken into account. A distinction is normally drawn between crack growth under the combined action 
of cyclic stresses and a surface-active agent, or corrosion fatigue, and corrosion cracking, in which the 
change of stress over time plays a secondary role. These phenomena are often both present, frequently 
showing up in the in:fluence of moderate stresses on crack growth when a cyclic component is present. 

Corrosion fatigue is a phenomenon in which mechanical, chemical, electrochemical and absorption 
processes interact. AJa example is the growth of fatigue cracks accompanied by the formation and fracture 
of an oxide film, in wlfich crack growth is alternately slowed down and activated as newly revealed surfaces 
of the metal dissolw~. A different mechanism is provided by crack propagation, accompanied by the 
diffusion of hydrogen near the crack tip and embrittlement of the metal near its end. Most investigations 
on corrosion fatigue have concerned the electrochemical, metallographic and chemical aspects of the 
phenomenon. The models of corrosion fatigue are, as a rule, qualitative in nature [3]. The prediction 
of crack growth is based on the principle of superposition or a modification of that principle. In the 
simplest case, the crack growth rate can be represented as the sum of two rates, one for a neutral medium 
while the other is a certain weighted value of the corrosion rate [4]. 

The growth of a macroscopic crack is the result of the interaction between the mechanisms of the 
accumulation of microdamage and the conditions of stability of the loaded body as a mechanical system. 
The main difficulty lies in determining the generalized forces which appear under equilibrium conditions 
and the stability of the "body with cracks-load" system. In the mechanics of brittle fracture, the 
generalized forces are taken to be such quantities as the intensity of energy release or the J-integral. 
In the mechanics of fatigue fracture, computing the generalized forces involves isochronal variation of 
the states of the "body with cracks-load" system, in which allowance must be made for the history of 
loading, deformation, microdamage accumulation and crack growth. 

1. STATEMENT OF THE P R O B L E M  

We shall treat a body with cracks under an applied load as a mechanical system with unilateral 
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constraints, to allow for the irreversibility of cracks in ordinary structural materials. As in [1, 2], we use 
Griffiths' concept of variation: in the isochronal transition to adjacent equilibrium states the only factors 
subject to variation are the crack parameters, while the equilibrium equations, the consistency of 
deformations, and all the boundary conditions, apart from the conditions at the crack tips, are satisfied. 
The crack parameters a 1 . . . . .  a m can then be interpreted as generalized coordinates. Their variations 
satisfy the conditions 5aj I> 0 (j = 1 , . . . ,  m), by definition. 

A system is called a "sub-equilibrium" system if the virtual work of all the external and internal forces 
calculated under Griffiths' variation 8W < 0; it is called an "equilibrium" system if there are variations 
in which 5W = 0, and for the other variations 8W < 0, and a "non-equilibrium" system if there are 
variations for which 8W > 0. By definition, sub-equilibrium states are stable and non-equilibrium states 
are unstable, and the stability of the equilibrium states depends on the sign of 8(8W), where the second 
variation is computed by Griffiths' method. The equilibrium state of the "body with cracks-load" system 
is stable if, for all variations 5(5W) < 0, and unstable if there are variations for which 5(8W) > 0. The 
case where ~5(8W) = 0 for some variations and 8(8W) < 0 for others corresponds to neutral (critical) 
equilibrium of the system or is problematical. 

We will represent the virtual work in the form 5W = 5 W  e + 5 1 ¥  i + ~Wf, where 8We is the work of 
the applied forces, ~SWf is the work of the internal forces and 5Wf is the work done in moving the crack 
tips. It is natural to introduce generalized forces by means of the relations 

rrl m 

8W~ + 5 W  i = ~ G j ~ a j ,  8Wf = - E F y f a j  (1.1) 
j=l ]=1 

We shall henceforth refer to the forces Gy as active (forces which propagate cracks), the forces F as 
passive (resistance forces). A fatigue crack will not grow if all Gj < Fy. When the equality Gk = Fk is 
reached for one of the ak, a crack can begin to grow. This growth will be stable if 8Gi,/Saj, < 5Fk/Sal, 
and unstable if c3Gffda k > 8FffSa k. If at least one of the relations between the generalized forces takes 
the form G~ > Fk, the system becomes unstable with respect to the corresponding generalized coordinate. 
A more general case is considered in [5-7]. 

Consider a one-parameter crack, that is, one whose behaviour is described by means of the one 
parameter of length a. Then the condition for growth to start, to continue and to arrest can be expressed 
in terms of the active generalized force G and the generalized resistance force F 

G X F (1.2) 

In the general case, both sides of (1.2) depend on the load parameters (for instance, on the extreme 
values of the applied stresses), the parameters of the environment (the concentration of the active agent, 
pH value and temperature), as well as on certain variables which characterize the distribution of damage 
at the crack tip and on its continuation. In the simplest case it is sufficient to introduce two scalar 
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measures, one of which describes the mechanical component of microdamage and the other--the 
corrosion component. This means that relation (1.2) must be supplemented by the equations of damage 
accumulation over time. 

2. THE MODEL OF A C O R R O S I O N  FATIGUE CRACK 

The proposed model is shown in Fig. 1. A body with a surface crack of depth a is subject to cyclic 
stresses 6®, in the direction of the normal to the plane of the crack, and an active agent, the properties 
of which at the crack mouth can be characterized by a certain parameter coo (concentration, pH value, 
etc.). We distinguish two characteristic zones at the crack tip. The zone with scale ~f has intensive 
accumulation of the mechanical component of fatigue damage. The level of damage is described by 
the scalar measure of, where 0 ~< of ~ 1, the value of = 0 corresponding to the undamaged material 
and of = 1 to the totally damaged material [8, 9]. We will denote the measure of mechanical damage 
at the crack tip by ~gf. and the level of damage beyond the end of the crack (in the far field) by ~gff. 

The end zone of corrosion damage is, in general, different from the end zone of mechanical damage. 
Confining ourselves to corrosion which is accompanied by the formation of an oxide film (Fig. 1), we 
will identify the dimensions of the end zone of corrosion damage with the film thickness 3. c. In the typical 
case ~-c ~ ~f- We will introduce a measure of corrosion damage 0 ~< oc ~ 1, denoting its value at the 
crack tip by ~gc. 

In fatigue theory, cracks cannot be interpreted as mathematical cuts. For a complete description of 
the conditions at the (',rack tip, one must introduce either the effective radius of curvature of the crack 
at the tip 6 (in the model of a thin plastic zone, for instance). It is assumed below that the material 
deforms elastically, and the radius p is taken as a characteristic describing the stress concentration at 
the crack tip when the fractographic picture is complicated and the material is less rigid near the tip. 

Thus, under the joint action of cyclic stresses and the environment the behaviour of the material is 
characterized by the measures of damage Vf, off and o~, the size of the end zones ~.f, 9~ and the effective 
radius of curvature at the tip p. Generally speaking, the size of the end zones and the effective radius 
at the tip depend on the level of damage at the tip and the history of the crack propagation. In particular, 
when describing the spontaneous growth of a crack, we need to allow for both a change in p (blunting 
and sharpening of the tip) and the possibility that the oxide film fractures. 

For further analysis, we need to formulate the equations of damage accumulation. The threshold- 
power law [1] is general enough for this. According to this law, we use following equations for the 
measures of damage ,an the continuation of the crack tip x ~ a, y = 0 

= - -  ) ~t'Oe = I IC- -C th l  n ~(of /AC_Arth m, - - ~  (2.1) 
ON k ad Ot t~.  c d ) 

Here N is the number of cycles, taken as a continuous argument; t is the time; At~ is the tensile stress 
amplitude and c is the concentration of agent at the crack tip and its continuation. The following 
parameters of the material appear on the right-hand sides of Eqs (2.1): 6d and Co are characteristics of 
the material resistance to accumulated mechanical damage, At~th , Cth are the threshold values of the 
resistance; rn and n are positive indices and tc is a time constant. If hg < At~th or c < Cth , the right-hand 
sides in the corresponding Eqs (2.1) must be equated to zero. To make things simpler, we shall neglect 
"crack closure" and related phenomena [10], assuming that 6ram > t~el ' where gel is the "crack closure" 
stress. 

It is easy to obtain approximate equations for change in the damage measures at the tip of a moving 
crack. Replacing the partial derivatives in (2.1) by sub-stationary ones and noting that, within the end 
zones, ~of/& = (~gf - off)/~, ~o~/& ~ ~gJZ.c, we arrive at the equations 

P ~/f --(Off da =f.At~t-A(~th m, - -  ~ (2.2) dVf 
d N  ~.f dN ~. a d dt ~'e dt  t c ~, c d J 

where the values of h,7~ and ct are taken at the crack tip x = a. Equations (2.2) apply to both an immobile 
tip and a tip that is propagating relatively rapidly, when the first terms on the left-hand sides of the 
equations can be ne~;lected. 

The effective radius at the tip p appears implicitly in the first of Eqs (2.2) in terms of the stress 
amplitude hg~. If the material remains linearly elastic and the change in the deformation properties at 
the crack tip is taken into account indirectly in terms of the effective radius p, then 



292 V.V. Bolotin and A. A. Shipkov 

zxo, ao.[, + Z(a/ J (2.3) 

where Z is a coefficient of the order of unity (for an elliptical gap Z = 2). When setting up an equation 
for p, we must take into account three interacting processes: sharpening of the tip as crack growth 
accelerates, blunting due to the accumulation of mechanical damage, and blunting due to corrosion 
damage. Since the initial value of the radius plays an important part at the initial stage of crack growth, 
there is a certain first-order differential equation that the function p(N) must satisfy. In its simplest 
form it is 

d p _  Ps - P  da d~f ÷ Pc - P  d~e (2.4) 
~ ' -  ~'p ~ ' + ( P f - P )  dN f dt 

The first term on the right-hand side describes sharpening up to the "acute" value of the radius Ps 
and the other two describe blunting up to "blunt" values pf and Pc for mechanical and corrosion damage, 
respectively. Here Ps ~< min{pf, Pc}, and pf and Pc can be of the same order. The length parameter ~'0 
appearing in (2.4) characterizes the distance which the crack tip must traverse in order that the 
sharpening effect becomes important. It is obvious that ~'p is of the same order as the size of the end 
zone ~.,. In addition, Eq. (2.4) contains the frequency of the change of stresses/. 

One more variable which must be discussed is the parameter of the active medium c. To fix our ideas, 
we shall refer to the concentration of active agent, or simply the concentration. For small cracks ct ~- 
c~, where c~ is the concentration at the body surface, that is, at the crack mouth. For deep cracks ct < 
c~. To find ct, we must solve a hydrodynamic problem, allowing for diffusion of the agent and its 
interaction with the end zone, and with the lateral surfaces of the crack. The problem is complicated 
by the fact that the crack changes shape both as a result of growing and due to its partial closure. 
Moreover, actual fatigue cracks are irregular in shape and not straight. Although one could consider 
the corresponding hydrodynamic problem in a one-dimensional formulation [11], we shall use a 
phenomenological model for ct similar to Eq. (2.4). 

We will introduce the differential equation 

d c t  _ c a  - c t c t d a  

dt t a ~'e dt (2.5) 

where Ca is the steady-state value of the concentration at the immobile tip, ~.c is a parameter of length 
like ~.p in Eq. (2.4) and t a is a time parameter, which characterizes the rate of change ofc  t with an arrested 
tip. This parameter obviously depends on the crack depth a and the frequency of loadingf. We take 

a**~, f**) J ' ~f >0' t~ c > 0  (2.6) 

where aoo and f~o are parameters of the material having the dimensions of length and frequency 
respectively. 

For slow loading processesf "~ f~o, and formula (2.6) gives Ca = coo[1 + (a /a~)] -~. As the crack gets 
deeper Ca decreases, owing to the fact that fresh agent has difficulty reaching it. I f f  -> foo, the mixing 
process intensifies, so that (other conditions remaining the same) a a approaches coo. Thus, the model 
(2.5) and (2.6) is sufficiently flexible to describe the change of concentration at the tip with allowance 
for the main factors: the depth of the crack, its growth rate and the frequency of loading. 

3. T H E  E Q U A T I O N S  OF C R A C K  G R O W T H  

The relation between the generalized forces for a one-parameter fatigue crack has the form 

o r (3.1) 

where, for the initial crack, G < F. For a crack which is growing in stable fashion, G = F, d G I ~  < 
tgF/c3a. Since the active generalized force G characterizes the energy liberation in the entire "body with 
crack-load" system, the influence of microdamage on the value of this force is quite insignificant [12]. 
Thus we can put 
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G =/~(1 - v2)lE (3.2) 

where K is the stress intensity factor (here and below any reference to the mode of fracture is omitted), 
E is Young's modulus and v is Poisson's ratio of the material. The value of G in (3.1) is taken at a time 
at which the applied stresses reach maximum values o~a~(N). Then in formula (3.2) 

Kma x = YO.n~°t(ita) j6, Y = O (I) (3.3) 

When calculating the generalized resistance force F, we need to allow for both the mechanical and 
the corrosion components. The force F can be expressed in terms of the specific work of fracture ~/, 
which is equal to the energy which must be expended to advance the crack tip over unit area. There is, 
as yet, no reliable experimental data on the effect of microdamage on the characteristics of crack stability. 
The simplest model is an additive one [13]; here 

Y = TOil - (COl + co c)l~ / cor~ ] (3.4) 

where T0 is the specific work of fracture for the undamaged material and 13 > 0. Suppose that col in 
formula (3.4) can take values greater than unity. When cor > 1, the value 70(1 - C0r ~) characterizes the 
residual crack stability of the damaged material, that is, material for which co = cof + coc = 1. Formula 
(3.4) corresponds to the expression for the generalized resistance force 

r -- TOil -- 0t/f  + ¥ c )  I~ / ¥ ~ ]  (3.5) 

An approximate equation for the steady growth of a corrosion fatigue crack is obtained from the 
approximate equations (2.2), neglecting the first terms on their left-hand sides. Then 

~, ( da "~-I( At~t --A(~th )m -I n ~'e ( da ~ ¢ ¢t --Cth ~ 
¥r=¢%f+ 'td"N'J ( "  Od _ ' ¥c='~'ck,~,/ t , ~ J  (3.6) 

Substituting (3.6) into (3.5) and equating the value of G in (3.2) to F, we obtain an equation which 
is solved for da/dN 

' + - - ] '  da 
= :  th l - -" max 

(3.7) dN A6t 

K~ =: ToE/(i - v 2) 

where we have introduced the notation Kc for the critical stress intensity factor ("critical" as in fracture 
mechanics). 

The expression in the first square brackets on the right-hand side of Eq. (3.7) allows for the 
contribution of microdamage at the tip and that in the second square brackets allows for the contribution 
of the energy balance in the "body with crack-load" system and also the far-field microdamage. The 
crack growth becomes unstable when Kma~ = Kfc, where Kfc is the critical stress intensity factor for fatigue 
cracks 

Kfe = K e [ I -  (f.Off If, Or)] 1312 (3.8) 

Formula (3.8) take.,; into account the lower crack stability due to microdamage accumulated in the 
far field, that is, before the crack tip reaches a position at which actual fracture occurs. For K ~ Kee we 
have the equation 

i /} da  ~,f ACt th. ~Lc Ct -- Cth 
= + - -  ~ ( 3 . 9 )  dN tic C d 

Formally, the right-hand side of Eq. (3.9) looks like the result of superposing the rates associated 
with mechanical and corrosion damage [4]. In reality, however, even such a simple equation describes 
the interaction of all the processes. Thus, the stress amplitude Aot depends on the stress concentration 
at the tip which, in turn, depends on both damage measures; the concentration of agent ct at the tip 
depends on the depth of the crack and the rate at which it is growing, etc. A further complication arises 
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from the fact that the size of  the end zones is, generally speaking, not a constant of the material. The  
value of ~.f is of  the order of  a few radii of  curvature at the tip or, in the model of a thin plastic zone, 
the length of  that zone [2]. The value of  k c can be associated with the measure of  corrosion damage,  
putting Le = ~ ' ~ ,  for example, where ~ corresponds to a fully formed oxide film, ot > 0. On the whole, 
Eqs (3.7) and (3.9) are more illustrative in nature, demonstrating that the conclusions of  the 
theory can be interpreted in the context of known semi-empirical equations [3, 14]. I f  no further 
simplifications are made,  the only way of using the proposed model is to perform a computational  
experiment. 

4, N U M E R I C A L  M O D E L L I N G  

The computational  algorithm contains the simultaneous solution of Eqs (2.4)-(2.5) before the first 
equilibrium state is reached. At that instant we have 

E~/0 , [ 1 - I ¥ '  + ~ 9 ]  13] (4.1) 

After  the first equilibrium state is reached, the size of the crack is given a small increment Aa, after 
which the computat ion cycle is repeated. The algorithm additionally includes internal iteration loops, 
since the variables at(N), of(x, N), oc(x, N), p(N) and ct(N) are mutually conditioned. For the stresses 
a(x)  on the continuation of the crack tip, we use the solution for an elliptical crack 

(~ ~2 -I'g (1 -- tl)2[~4 + 3~'2 + g(~2 - 1)] (4.2) 

o® = + 2( 2 

= ( x l a ) + [ ( x l a )  2 + ( p / a )  2 -1 ]  ~ 1 - ( p l a )  ½ 

l + ( p / a ) ½  ' g = l + ( p / a ) ½  

The use of  formulae (4.2) removes the need to find the size of the end zone kf. The thickness of  the 
corrosion film is taken as ;~ = ~Vf.  

We used the following basic numeral data: E = 300 GPa, v = 0.3 and 70 = 10 kJ/m 2. In the first equation of 
(2.•) we took oa = 5 GPa, AOth = 250 MPa with a coefficient of asymmetry of the cycle R = omin/o m~ = 0 and 
exponent m = 4. In the second equation of (2.2), the concentration c is relative to the parameter of the material 
Ca, SO that the conditions of the surrounding medium are expressed in terms of the dimensionless quantity CJCd, 
where c~ is the concentration at the crack tip. The threshold concentration was taken as Cth = 0 and the exponent 
n = 4. We took the following values for the characteristic lengths in Eqs (2.4) and (2.5): Ps = 10 gin, p f  = Pc = kp 
= ;~ = 100 gm. The maximum thickness of the oxide films X0 = 10 ~m. The constant times in the second equation 
of (2.1) and Eq. (2.5) were taken as tc = ta = 1 h. In formula (2.6) a~ = 1 gm, f~ = 1. 

The results of the computational experiment for Ao® = 100 MPa andf  = 1 Hz are shown in Figs 2--4. The initial 
data were: a0 = 1 gm, P0 = 50 gin; all the damage parameters are zero in the initial state. Curves 1-4 in Figs 2 
and 4 correspond to concentration levels c®,c a = 0.25; 0.5; 0.75; 1.0. The change in concentration at the tip C/Cd 
as a function of the number of cycles N is shown in Fig. 2(a). As the crack deepens, its growth rate increases, and 
the concentration of the active agent at the tip declines, falling rapidly before final fracture. 

Figure 2(b) shows the change in the effective radius of curvature p during the crack growth. The stage crack 
sharpening from the initial value P0 = 50 lam to a value close to p = 80/am cannot be seen. Steady growth proceeds 
at a radius close to this value. Sharpening of the tip starts at the final stage of crack growth. However, for high 
values ofc®,ca, some sharpening is observed at the initial stage. This can be explained by the interaction of mechanical 
and corrosion damage. 

Figure 3 shows the behaviour of the measures of microdamage re, Vc and V = ~/t + ~c for CJCd = 0.25 (a) and 
c~o, Ca = 1 (b). The graphs illustrate the interaction between the different mechanisms and the way in which the 
contribution of each damage component changes during crack growth. For small C~o,Cd mechanical damage 
predominates, so that V = yr. At the initial stage of crack growth a pure corrosion component Vc is also observed. 
Near ~ = 1 the crack moves away. For large c~,c a the contribution made by corrosion damage is substantial (Fig. 
3b). As the crack tip moves, the corrosion component decreases and the mechanical component increases. Both 
components (like their sum) start to decrease rapidly as final fracture approaches. The quantity ~/~ can be interpreted 
as the dimensionless thickness of the oxide film. By the end of the process, this quantity falls practically to zero. 
The most important feature of the graph of Fig. 3(b) is the spasmodic behaviour of the measures yf and Vc at the 
initial stage. This can be interpreted as the result of alternate sharpening and blunting of the crack. 

The crack size a as a function of the number of cycles N is shown in Fig. 4(a). 
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Figure 4Co) shows the crack growth in standard form (the growth rate da/dN as a function of the amplitude of 
the stress intensity factor AK). The first part of the curves differs from the usual experimental diagrams of the 
fatigue crack growth. In particular, there is a non-monotonic dependence of the growth rate da/dN as a function 
of the amplitude AK and considerable scatter, depending on the concentration of the active agent. At high 
concentration, the initial part of the diagram can be interpreted as a "plateau", corresponding to the low contribution 
of the purely mecharfical componentto the crack propagation rate. The mechanical component then starts to 
predominate. The ink!die part of the diagram corresponds to the usual Paris-Erdogan approximation with angular 
coefficient close to m = 4. Crack growth then accelerates until final fracture. 

Figure 5, with c=]co = 1, illustrates the influence of the load frequency on the crack growth rate. 
Curves 1-4 are for frequencies f = 0:1, 1.5 and 10 Hz, respectively. The velocity is measured in m/cycle in Fig. 
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5(a), and in m/s in Fig. 5(b). The greatest divergence in the first diagram is on the initial segments of the curves, 
where corrosion damage predominates. The divergence is substantial throughout the whole of the second diagram. 
In both cases the angular coefficient in the middle part of the curves is close to the exponent m = 4 in Eq. (2.1). 

These graphs represent only a small part of the computational experiment performed, in which a study was made 
of the combined influence of extreme cyclic stresses, the lam loading frequency and the initial conditions on the 
crack growth rate and the behaviour of the other defining parameters: the concentration of the active agent, effective 
radius at the tip, and measures of mechanical, corrosion and total damage. We have shown that some of the 
parameters of the proposed model can be determined from the results of standard tests of corrosion fatigue and, 
in particular, from experimental diagrams of crack growth for different levels of cyclic stresses, different 
concentrations and different initial conditions. 
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